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split as 

"~0~, = 2b~, + ~b~ (45) 
into an i tensor 2 li and an s tensor 2~s, both of 
which are third-rank tensors without intrinsic sym- 
metry. 2 "  ~ can be expressed in terms of these tensors 
as 

.a~ltl li ls jik = -- ~ Ok + 2~Uk. (46) 

3. Discussion 
In contrast to tensors describing equilibrium proper- 
ties, tensors describing transport properties generally 
split into two components behaving differently under 
I' if the point group is not grey. If one of the two 
components is symmetric under the exchange of the 
two indices that do not refer to H, the other will be 
antisymmetric in these indices. 

Some authors (Cracknell, 1973; Birss & Fletcher, 
1980; Malinowski, 1986) let H include internal mag- 
netic fields generated by the magnetic structure in 
addition to the externally applied magnetic field. 
Although both types of magnetic field behave in the 
same way under time reversal, there are essential 
differences, which require separate treatment in 
order to avoid confusion. Externally applied mag- 
netic fields may be chosen to be arbitrarily small so 
that an extension into powers of H does make sense, 
which is not the case for internal fields, e.g. in a 
magnetic domain of a single crystal of ferromagnetic 
material. The internal field of such a domain is 
invariant under the symmetry group of the domain 
whereas H may have any direction. 

Our treatment of transport properties is com- 
patible with the treatment of magneto-optic effects in 
magnetically ordered crystals by Eremenko & 
Kharchenko (1984). The optical properties also differ 
essentially from equilibrium properties because of 
the high frequencies that are involved. 

The author is very grateful to Professors H. 
Schmid and J. Brandm/iller for drawing his attention 
to transport properties in magnetically ordered crys- 
tals, for guiding him to relevant literature and for 
their constructive criticism of an earlier version of 
this paper. 
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Abstract 

Certain age-hardenable alloy systems can produce 
zones of large matrix distortion about precipitates 

© 1993 International Union of Crystallography 
Printed in Great Britain - all fights reserved 

having a size misfit with the surrounding matrix. 
These zones grow with ageing and give diffraction 
effects that are challenging to interpret. This paper 
describes such a model, based upon the random 
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772 SYSTEMS IN EARLY STAGES OF PRECIPITATION 

positioning of precipitates that produce severely dis- 
torted zones in the surrounding matrix. In an inter- 
mediate stage, matrix intensity is partitioned into 
Bragg peaks, static diffuse scattering and quasilines. 
The latter two forms of scattering are diffuse scat- 
tering that sharpens to widths not much broader 
than those of normal Bragg peaks. When all three 
forms of scattering are present, they are sufficiently 
localized about the reciprocal-lattice points to allow 
a column interpretation of the diffraction model 
much like that used in the study of cold-worked 
metals. The strain Fourier coefficients in this case are 
calculated from an elastic model. Theoretical results 
include Laue-like scattering from precipitates, which 
can also be influenced by displacement fields from 
other precipitates. In this case, the dominance of 
particle-size broadening reduces the role of strain 
broadening. Results may be expressed in terms of a 
few parameters that may be conveniently related to 
physical properties. 

I. Introduction 

When atoms in binary solid solutions are correlated 
over relatively small distances, diffuse scattering pro- 
vides a proven method of determining the local 
atomic arrangements in terms of a limited number of 
short-range-order (SRO) and size-effect coefficients 
[see Moss, Sparks & Ice (1992a,b), Schwartz & 
Cohen (1987) and Warren (1969)]. However, for 
systems undergoing phase separation, the correlation 
distances and therefore the number of SRO coeffi- 
cients soon become excessive as the transformation 
proceeds. Large displacements extending well outside 
a precipitate greatly complicate this approach and 
the determination of atomic arrangements becomes 
unnecessarily difficult. Under these conditions, the 
diffuse scattering sharpens into broadened Bragg-like 
peaks. The intent of this paper is to treat this early 
stage of precipitation in such a way that the struc- 
tural parameters are limited in number and may be 
related more directly to the physical phenomena. 
This paper provides a theoretical basis for future 
papers dealing with experimental X-ray diffraction 
results obtained from various ageing treatments, to 
be reported, on a copper-beryllium sample. In this 
case, precipitation has produced severe distortions in 
the matrix about precipitates. 

Age-hardening transformations in crystalline 
solids begin with finite transformed regions (clusters, 
zones or precipitates) that are between one and 
several orders of magnitude smaller than the dimen- 
sions of the original crystal. For systems having two 
or more atomic species, the precipitate can become 
enriched in at least one component, producing a 
depletion in the surrounding matrix. The matrix 
lattice appears to be continuous about the preci- 
pitates, essentially extending to its original dimen- 

sions. The atomic positions within coherent 
precipitates may be treated as matrix positions that 
have undergone a simple transformation of their 
original positions with no loss or gain of sites but 
with a change in composition. Atomic planes enter 
and leave precipitates continuously. These zones of 
precipitation are highly oriented relative to the sur- 
rounding matrix. At the other extreme, the zone of 
precipitation may lose or gain lattice sites and have 
partial or no continuity with respect to the lattice 
planes in the matrix. In each case, the surrounding 
matrix can become distorted, depending upon the 
new atomic arrangements, the atomic size differences 
and relaxations associated with the interface struc- 
ture. An alloy may experience both extremes during 
a transformation as it forms various intermediate 
metastable precipitates. 

Krivoglaz and co-workers [see Krivoglaz & Hao 
(1969) and Barabash & Krivoglaz (1978)] have car- 
ried out theoretical investigations of X-ray scattering 
from spherical coherent precipitates with lattice dis- 
tortions. More recently, Barabash & Krivoglaz 
(1981) have extended these results to include an 
anisotropic elastic matrix. Dederichs (1971) con- 
firmed and extended the early work of Krivoglaz and 
co-workers for large distortions. Others 
(Dobromyslov, 1976, 1980; Ganzhuila, Kozlova & 
Kokorin, 1981; Larson & Schmatz, 1974; Larson et 
al., 1987) have carried out theoretical and 
experimental studies of the scattering from dilute and 
concentrated alloys containing precipitates. 
Trinkhaus (1971) treated the scattering from an iso- 
tropic distortion center in an isotropic material in the 
limit of vanishing defect sizes but with large distor- 
tions. The form for the scattering near the Bragg 
reflections was identified. Dederichs (1970) and Hol~ 
(1984) have discussed diffuse scattering for the case 
of inclusions with amorphous internal structure. 
These treatments generally make simplifying assump- 
tions or approximations to achieve closed-form 
expressions for the scattering. Iida, Larson & 
Tischler (1988) have used numerical calculations to 
investigate the scattering near Bragg reflections from 
spherical coherent precipitates in an elastically iso- 
tropic medium, reducing the calculation to an easily 
evaluated one-dimensional numerical integral, which 
illustrates the characteristic form of the scattering 
from finite-sized precipitates. These results provide a 
determination of the size, internal strain and number 
density of such precipitates in crystalline materials 
that obey these conditions. However, the problem of 
large distortions leading to quasilines was not 
treated. 

Explicit and detailed calculations are still needed 
for the analysis of experimental measurements from 
samples having precipitates of a more general shape, 
of finite size and producing severe displacements in 
an elastically anisotropic matrix. In the following 
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scattering calculations, a void is created by the sub- 
traction of matrix atoms and refilled with atoms of 
the correct type and arrangement. A range of preci- 
pitate shapes may be treated by making use of an 
ellipsoid of revolution with various semi-axis ratios. 
Precipitates shaped as needles, spheres or discs are 
special forms of an ellipsoid. The displacement field 
in the matrix resulting from misfit is also convenient- 
ly determined with an ellipsoidal shape. 

A quantitive X-ray diffraction analysis from 
samples containing a mixture of two crystalline 
phases can be approached using well established 
techniques [see Cullity (1978)]. However, when preci- 
pitation occurs within grains, as previously 
described, several additional scattering effects are 
found that are not of a routine nature. These effects 
are conveniently developed in three stages. The first 
is a calculation of the scattering from a matrix with 
voids in an otherwise continuous lattice. The second 
introduces precipitates into void space and the third 
treats the elastic disturbance about precipitates. A 
paper is in preparation that illustrates a quantitative 
application of diffraction theory developed in this 
paper to fit experimental data obtained from a 
copper-beryllium alloy. 

II. Diffraction from voids 

In calculating the scattering from a random distribu- 
tion of no voids, it is assumed that the fraction of 
vacant sites is small, i.e. less than 1/20. The full 
amplitude of scattering may be described by a sum 
over all lattice sites. 

A = F0. (la) 

0. = Zexp(27rtI-I'~,,)exp(27rffI'Rm), (lb) 
m 

where F is the structure factor of a cell at lattice 
position Rm, given in terms of the average lattice 
parameters al, a2 and a3 and the cell displacements 
~m. The position in reciprocal space is given by 

H = hlb~ + h2b2 + h3b3, (2) 

where hi, hE and h3 are continuous variables and 
bl, b2 and b3 are the reciprocal-lattice vectors 
determined by their average lattice. The presence of 
voids reduces the amplitude according to 

Av= F 0 . -  o 'oZexp(2~ff l 'Sm)eXp(2~l t t 'Rm , 
m 

(3a) 

where the summation contains terms that locate the 
center of each void within the matrix lattice. 0.o rep- 
resents a limited summation over fictitious matrix 
cells and is like (lb) but only taken over the fictitious 
set of matrix cells that must be removed in order to 
create a void. These fictitious cells are arranged like 
matrix cells with locations given in terms of the 

average matrix lattice parameters rather than the 
new set that is described later for precipitates. 

The sum 
n v 

o-co = Z exp (2"n-t'a" ~m) exp (27rill" R,,) 
m 

extends over all center points of voids within the 
matrix lattice. This allows the amplitude of matrix 
scattering with voids to be written as 

Ao = F [ 0 . -  0.o0.co]. (3b) 

To calculate the intensity, /, in electron units, we 
average the product of amplitudes 

I / F  2 = ( A A * )  = ( (0 . -  0.~o0.o)(0.- 0.coo.o)). (4) 

The average for all grains is taken by allowing the 
center of each of the no voids to occupy each lattice 
position without considering impingements or lost 
sites at or near the surface. This is valid for small 
concentrations of voids - a restriction that is recon- 
sidered later. In carrying out the summations 0. and 
0.o, it is convenient to locate both origins at centers 
of symmetry, i.e. in the lattice and the void. This 
results in the following relations for complex conju- 
gates: 0. = 0.*, 0.o = 0.*, 0.¢o = 0.*o, such that 

I / r  2= o v 2 -  2(0.~o)0.o0. + (0.~o)0.2; (5) 

each void is taken to be identical with an average 
size. Because each of the no void centers can occupy 
all lattice sites independently, one can write 

0.co= no(0./N).  (6) 

The average of the third term in (5) involves a double 
2 sum containing no terms, which can be reduced to 

(o'2,,) = no + n o ( n o -  1)(0./N) 2 (7) 

for a random arrangement of voids. Substitution of 
(6) and (7) into (5) gives 

I/ F 2 = 0 . 2 -  2(no/ m)0.o0. 2 + no0. 2 + (no/ m)2 0.2 o "z, (8) 

with the approximation n o -  1 = no. 
Equation (8) can be simplified if a precipitate has 

dimensions much smaller than every dimension in 
the crystal. With 0.o having a width that is one to 
two orders of magnitude broader than 0., the prod- 
ucts become 

O'o0. 2 ---- 0 . o ( M ) 0 .  2, (9) 

2 2 0.2(M)0.2  ' ( 1 0 )  0%0. "-- 

w h e r e  0.o(M) is taken as a constant and designates 
the value of 0.o at the peak position of the much 
sharper matrix function, 0.. 

With substitution of (9) and (10) into (8), or 
2 2 I = FzMv0. 2 + N C o F  (0.o ~No), (1 la) 

with 

F ~ v  = F 2 { 1 - C v [ 0 . o ( M ) / m o ] }  2 ( l lb)  
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and 

Co = n,,No/N, 

FMV can be taken as an average structure factor for a 
matrix with voids, while Co is the fraction of 
fictitious matrix cells associated with voids. 

The first term of ( l la)  represents the Bragg scat- 
tering with a modified structure factor that allows for 
the removal of cells at voids. If the displacements 
~, .=0,  the scattering is localized into sharp Bragg 
peaks scaled by FZMv and shaped according to g2. 
Equation (1 l a) is rewritten and modified to 

I/V 2 = U[(1 - Co)2(gz/u) + UCo(1 - Co)(o'~ ~No)], 

(12) 
where 

cro(M) = No. 

This result could have been obtained directly by 
taking an average (F) over unit cells in the matrix 
and nonscattering void cells. The second term, or the 
void scattering, did not initially allow for void over- 
lap in taking the sum over void positions and gives 
an overestimate of the void scattering. At this point, 
overlap is introduced as a linear correction. This 
accounts for the additional term, ( 1 -  Co), in (12), 
which takes the void scattering to zero as Co---" 1 and 
does not alter the original result as Co--*0. 

Another known limit can be examined by 
beginning with (12). If this is a random solution of 
matrix atoms with scattering factor f and vacancies, 
with No = 1, F = f  (1 atom cell- ~) making go-2 _ 1, one 
obtains the classical Laue monotonic scattering. 
Under these conditions, the second term is identically 
equal to the expected Laue monotonic (Warren, 
1969) or 

NCo(1 - Co)(f -O)  2. (13) 

Omitting the overlap correction ( 1 -  Co), as in the 
initial development, would restrict the result to small 
values of Co. 

2 gives An integration of (12) over o .2 and cro 

N 0 - C o ) ,  

the total number of occupied lattice cells. If the 
overlap correction were not included, a second-order 
term, NC~, would remain uncancelled. 

HI. Scattering from precipitates 

The results of the preceding section represent a start- 
ing point for calculation of the scattering from a 
lattice containing precipitates. In this case, the voids 
are filled with precipitates having a structure that in 
some way differs from the matrix. Lattice sites may 
or may not be conserved and an elastic disturbance 
in the matrix is included in g as displacements, 8,., 
that are obtained from an elastic model. As before, 

go is a summation over fictitious matrix cells that are 
subtracted to make space for an average precipitate. 
go is a summation over average precipitate cells 
occupying an average void having a structure factor 
F~. The precipitate lattice parameters are a~, a2 ~ and 
a3, with reciprocal axes b~, b~ and b3 ~. Addition of 
the amplitudes to (3) gives the amplitude for a matrix 
with precipitates, i.e. 

I =  [ F ( g -  g¢ogo) + Fogcogo] 

× [F*(g-o 'cogo)  + F0gct~go]. (14) 

The same center locations are taken for voids and 
precipitates, such that gco = g~o and g o =  g$ 
because the origins are at centers of symmetry. By 
using these relations and taking the product, one 
obtains 

with 

I = F 2 p o  "z + no(Foo'o - Fo'o) 2, (15a) 

FMp = F(1 + (C,,INo){[Fo(M)IF ] 

x go(M)- g,(M)}), (15b) 

where n o is the number of precipitates, which is equal 
to the number of voids, no. Note that the structure 
factor FMp for the matrix is altered if the scattering 
amplitude of the precipitate has a nonzero value at 
the Bragg peak for the matrix. The degree of overlap 
determines the coherency at the sharp Bragg peak 
originating from the matrix due to precipitate scat- 
tering. It also includes a negative contribution from 
the fictitious matrix cells in that volume occupied by 
precipitates. The second term in (15a), when 
expanded as a binomial, contains relatively broad 
Bragg scattering from the precipitate, void scattering 
and a cross term. It reduces to the classical Laue 
monotonic diffuse scattering if the precipitates each 
contain only one atom, B, in a matrix of A atoms. 

Equation (15a) can be rewritten as the intensity 
per cell: 

I /U= VZ~v(gZ/U) + CoO - Co)O/No) 

x (F o go - Fgo) 2, Co < 0.5. (16) 
Again, a linear impingement correction (1 - Co) is 

included. The two reciprocal lattices, one for the 
matrix and one for the precipitate, are typically 
related by orientation relationships in the early 
stages of precipitation. Orientation relationships, 
differences in the reciprocal-lattice vectors and the 
ratio CoFo(M)go(M)/NoFoo(M ) determine the 
coherency correction contained in FMp. 

Equation (16) agrees with four limits that are 
listed as follows: 

(I) The first limit is taken by setting F o = 0, which 
gives the void limit considered in the preceding 
section, i.e. (12). 

(II) Matrix without precipitates. In the second 
limit, voids and precipitates are eliminated by 
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refilling voids with matrix material. This requires Ft3 
= F and o't3 = tro, giving I = F Z t r  2. 

(III) For the third limit of practical interest, the 
precipitate size and the lattice are sufficiently large 
and different for there to be no significant overlap 
between go, trt3 and tr, causing trt~(M)= o'~tro = 0, 
which gives 

I / N =  F2{1 - Co[o'o(M)/No]}a(o'2/N) 

+ cv(1 - Co){[(r~,~,)2/Uo] 

+ [(Ftro)2/No]}, Co < 0.5. (17) 

This represents a departure from the result typically 
used in conventional quantitative phase analysis 
owing to a void correction. 

(IV) Laue monotonic. The fourth limit demon- 
strates that (16) is in agreement with the classical 
Laue monotonic scattering for a random solid solu- 
tion of B atoms in a matrix of A atoms. This is found 
by setting Co = C~, No = 1, trt3 = 1, Ft~ =fB and F = 
fA, giving 

I =  F2tr  2 + Co(1 - Co)N( fB-  f4)  z. 

Again, complete agreement in this limit is found only 
when the impingement correction, 1 - Co, is 
included. 

IV. Scattering from highly distorted lattices with 
precipitates 

Lattice distortion associated with precipitation in an 
elastically anisotropic medium can become severe 
and produce special scattering effects. Little is 
known about the stage of growth when precipitates 
produce severe matrix distortions that begin to 
encompass a significant volume fraction of the 
matrix. This region of severe distortion can give 
Bragg-like quasiline peaks that are sharp enough to 
be misinterpreted as scattering from a new phase. 
However, a careful examination of their integrated 
intensities demonstrates that these scattering peaks 
originate from the matrix rather than from a new 
phase. As the volume fraction of severely distorted 
matrix increases, this scattering (the quasilines) 
increases in intensity. The quasiline peak width in a 
powder pattern is comparable to those of Bragg 
peaks measured from a highly cold worked metal. 
This similarity justifies a development that begins 
with a conventional powder line-shape calculation. It 
introduces mathematical simplicities at an early stage 
of the calculation. Lattice displacements are 
described later in terms of the ellipsoidal elastic 
model, which requires numerical calculations. At an 
intermediate stage of displacement severity, com- 
puter simulations show that Huang scattering is 
typically two to three times sharper than the quasi- 
lines and is located very close to the sharp Bragg 
peaks. Quasilines may be located anywhere, from the 

Bragg peaks of the pure solvent lattice to those 
positions expected from a random solid solution. 
The shape of precipitate scattering is assumed to be 
dominated by their small size, but internal dis- 
placements within precipitates, originating from 
secondary precipitates, may produce further 
broadening. As expected, the overall intensity of 
quasilines also increases with volume fraction. 

The total matrix scattering power for one peak 
from a fiat diffractometer sample (Warren, 1969; 
Schwartz & Cohen, 1987) is given by an integration 
over a small region in reciprocal space at distances 
h~, h~ and hl about a point (hkl): 

PM = Ie{(1/ A V)[(Ao/21.L )( l'2/47r)jgi]}(RJA 3/ Vc) 

x f f f[I~h~h~h~)/sin20]dh~dh~dh;,  (18) 

where Ie is the classical scattering from an electron, 
A V is the volume of an average,/2 is the solid angle 
of scattering viewed by the diffractometer out of a 
total angle of 47r, R is the sample-receiver-slit dis- 
tance, A is the wavelength, 0 is the Bragg angle and 

I~(h~h~h;) = F2eor  2, (19) 

with tr in its general form given by (lb). All other 
terms are defined in §V. For the present, it is 
sufficient to indicate that the terms in the curly 
brackets of (18) may be taken as the effective number 
of diffracting grains in a flat polycrystalline diffrac- 
tometer sample, i.e. 

(A0/2/z)( ~/4.a-)jg,/a V 

= diffracting volume/volume of average grain. 
(20) 

As previously discussed, the Bragg-like scattering is 
sufficiently close to the reciprocal-lattice points for 
the intensity integration in (18) to be performed over 
planes perpendicular to the diffraction vector, H, i.e. 
along bib2 directions rather than over a sphere. This 
introduces simplifications in the interpretation of all 
results that follow the integration. That is, one con- 
siders the scattering between pairs of cells within 
columns perpendicular to the Bragg planes. For 
cubic systems, the interplanar spacing is given by 

d = a/(h 2 + k 2 + 12) 1/2 = a3/lo, (21) 

with the normal Miller indices (hkl) representing the 
lowest order (lo = 1) for sets of planes of like orienta- 
tion. a3 is determined from the lattice parameter, a, 
of the normal cubic cell and h, k and l. Higher orders 
are designated by (nh, nk, nl) with l0 = n. The basic 
unit of distance along a column, d = a3, determines 
(m3 - m;)a3, the separation distance between pairs of 
cells at m3, m;. All distances and displacements 
entering into the intensity calculations become pro- 
jected along specified columns normal to the reflec- 
ting planes. The location of the undisplaced origin of 
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the unit cell at mlm2m3 is given by 

R(m) = mlal + m2a2 + m3a3, (22) 

with an unprojected displacement 

8(m) = Xma I + Yma2 + Zma3, (23) 

which is independent of the kind of atom at m. 
Because we are only interested in projected dis- 
placements along a3, which are parallel to the 
reciprocal axis b 3 ,  the square of the amplitude is 
reduced to (Warren, 1969) 

o'2 = Z E Z Z exp [27ri(Z,,,~ - Zm,)lo] 
m I m 2 m 3 m~ 

× exp[2rri(m3 - m~)h3], (24) 

which may be written in terms of an average over 
a representative grain for like pairs separated by 

t 
m 3 - m 3 = n cells: 

(o.2/N) = ~ Z (N,,/N3)(exp[27ri(Z,,,3- Zm')lo]),, 
t'n 3 rn~ 

× exp[2rri(m3 - m~)h3], (25) 

where N, is the total number of nth neighbors per 
column of orientation [hkl] per grain, N3 is the 
number of cells per column and N is the number of 
cells per grain. Since we are dealing with point-like 
defects having displacement fields falling off rapidly 
with distance relative to the size of a grain, at 
sufficiently large column distances, n a 3 ,  Z m 3  and Z,,; 
become uncorrelated and may be averaged indepen- 
dently, i.e. 

(exp[27ri(Zm,- Zm;)lo]) 

= (exp(27riZmlo))(exp(- 2rriZ,,,;lo)) 

Splitting (25) into correlated and uncorrelated terms 
gives a separation of Bragg and diffuse scattering: 

(o.2/N) = ~ ~ (N,,/N3)(exp(27riZ,,Jo)) 
m 3 m~ 

× ( e x p ( -  2rriZm,Jo))exp(2rrinh3) 

+ ~'. ~ (N,,/N3)[(exp[2rri(Zm3- Zm')lo]) 
m 3 rn~ 

-- (exp(2 7riZm31O)) 

x ( e x p ( -  2rriZ,,,;lo))]exp(2rrinh3). (26) 

The second sum converges more rapidly than the 
first, i.e. well before (N,,/N3)--,O. 

Displacements result from randomly positioned 
precipitates at sites t having a limited number of 
orientations that determine the overall symmetry of 
the deformed crystal. Ellipsoids located at lattice 

t t  t t  ?t t sites at m~, m2, m3, about a pair m3, m3, give 
additive displacements according to 

Zm~ = ~'. xtZ,, ,: (27) 
l 

with x, = 1 or 0 depending upon whether a site is 
occupied or unoccupied by a center. The correlated 

average is considered first and carried out in terms of 
the probability of site occupancy, c, or 1 - c  for an 
unoccupied site. Because the displacements Z,,,~ 
weighted by 10 can be large, no restrictive assump- 
tions can be made about the magnitude of loZm: We 
substitute (27) into (26). 

(exp[2'B'i~t loxt(Ztm 3 - Ztm'3)]) 

= (~t exp[2~iloxt(Ztm3 - Ztm')]) 

and note that, if no displacement source is found at 
site t, Zt,,,3 = Zt,,,,~ = 0. The average for each term in 
the product becomes 

x = 1 + c{exp[27rilo(Z,,,, 3 - Ztm')]-- 1}. 

Using the logarithmic identity x = exp (ln x) for each 
term in the product, one obtains 

exp[ln(1 + c{exp[2~ilo(Ztm 3 - Ztm'3)]-- 1})]. (28) 

Without restricting the values of loZ,,,: one finds that 

c{exp[27rilo(Ztm~- Ztm')]-- 1} << 0 (29) 

because c << 1 and the magnitude of terms in the 
brackets can only range from zero to one. Only one 
term of a series expansion of the logarithmic 
exponent is needed to treat large displacements. This 
important treatment for large loZ,,, 3 values was first 
given by Krivoglaz (1959, 1960, 1961) and later by 
Dederichs (1971). Substitution back into (28) and 
reintroduction of the sum over t gives 

e x p ( - c ~ t  {1-exp[27rilo(Zt,,,3- Ztm,3)]} ) 

= e x p ( -  Tm:n,), (30) 

which also defines the exponential factor T,,~m': 
This requires a detailed knowledge of a full set of 

relative displacements - a sizeable file of numbers. 
Consequently, the calculations are modified into a 
form involving displacements produced by a single 
particle interacting with columns. As a first step 
toward attaining this goal, (30) is rewritten as an 
equivalent product and sum, i.e. 

-- Tm3m'3 = c Z {[exp(27riloZtm)- 1] 
l 

x [ e x p ( -  2"triloZt,,,,3)- 1] 

+ [exp(27riloZtm)- 1] 

+ [exp(-27ri loZtm,)-  1]}. (31) 

The last two terms are simplified to 

2cZ[1-cos(2'n'toZtm)] = 2M. (32) 
t 

Initially, combinations of cells m3, m~ are selected 
having a column separation of n and with precipitate 
centers positioned in all possible lattice positions 
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about a pair. Alternatively, a single precipitate may 
be fixed at the center of coordinates and all dis- 
placements of matrix cells separated by n are 
summed throughout a crystal. The following 
exponential function describes terms for all corre- 
lated nth neighbors as well as terms that can be 
treated independently 

with 

- T(n)= ~ ( n ) -  2M, (33a) 

q~(n) = c Z Z Z[exp(27riloZm3) - 1] 
m I m 2 m 3 

x [exp(-27riloZm3+,) - 1], (33b) 

2 M =  2c Z Y. Y.[1 -cos(2~rloZm)]. (33c) 
m I m 2 m 3 

The location of m3 relative to the center of the 
precipitate t is given in terms of its vector com- 
ponents by rn~a~ + m2a2 + m3a3, while m; is located 
by simply adding na3. Both are in a column at m~a~ 
+ m2a2. Each neighbor n for all reflecting columns in 
the powder influences the value of T(n) through the 
summation over m~, m2 and m 3 in a 'representative' 
crystal. 

In treating the terms 

(exp(27rilZm,))(exp(- 27riZm,)) 

found in the Bragg-peak equation (26), the averaging 
sequence described in (27)-(32) is used, except that 
cell displacements are treated separately. This gives 
the important attenuation term, exp ( - 2 M ) ,  with the 
exponential factor described by (32). 

Combination of terms and substitution into (26) 
gives 

tr2/N = e x p ( -  2M)(Z  (N,/N3)exp(27rinh3) 
/ 

~ n  

+ Z (N,,/N3){exp[q~(n)]- 1}exp(2"rrinh3)). 
n 

] 

(34) 

The first of these terms represents the Bragg peak, 
which can be strongly attenuated through the 2M 
factor. The second term represents the local diffuse 
scattering resulting from both large and small dis- 
placements. 

At this point, it is convenient to re-examine the 
behavior of ~(n) within two regions about a pre- 
cipitate. In the second, small correlated elastic dis- 
turbances extending to distances greater than the 
highly disturbed zone about precipitates give a size- 
able volume of coupling obeying the condition 
~(n) << 1. The first region, or severely distorted zone, 
is also coupled, but displacements of m3m~ pairs are 
treated rigorously in the calculation of ~(n) [see 
(28)-(30)]. It is a zone that surrounds individual 
precipitates, where coupling is largely influenced by 
the field from a single precipitate rather than from 
several, giving an additive displacement. Although 

(34) treats both large and small displacements, the 
procedure followed makes it necessary to distinguish 
between the two kinds of displacement zone because 
each gives distinguishable scattering phenomena. In 
view of the conditions placed upon the second 
region, the expansion 

{exp[q~(n)]- 1}-'- ~o(n) (35) 

is used. Equation (35) requires that the sum of 
products, with displacements located in the exponen- 
tial terms of (33b), give a small ~(n). At this point, 
the terms 27rloZ,,, 3 are not assumed to be small. This 
gives the following static diffuse (SD) scattering that 
includes what is normally considered Huang* and 
Stokes-Wilson scattering, i.e. 

Iso/N= FEe exp ( - 2M)Z (N,/N3)q~(n)exp (2 rrinh~). 
" ( 3 6 )  

Apart from the size coefficient, which typically 
converges more slowly than ~(n), the summation is 
equivalent to the Fourier transformation of ~(n) 
defined by ~p(h3). 

The quasiline can be isolated from other forms of 
diffuse scattering by the addition and subtraction of 
~p(n) coefficients in the overall diffuse scattering, as 
given by the second term of (34), i.e. 

o~2/N = e x p ( -  2 M ) { ~  (N,/N3)exp(2~'inh3) 

+ ~..(N,/N3){exp[~p(n)]-1 - ~p(n)} 
n 

x exp (2"n'inh3) 

+ ~. (N,/N3)q~(n)exp(2"n'inh3)}. 
n 

(37) 

The second summation is influenced by the 
severely distorted zone and, because ~o(n) has a com- 
plex component, it is typically shifted from the Bragg 
peak. Although q~(n) is influenced by large dis- 
placements, this term cancels for small n owing to 
the addition and subtraction of q~(n) terms in (37). 

In evaluating the Fourier coefficients of the third 
summation, one finds that they converge more slowly 
than those in the second summation but faster than 
those coefficients describing the Bragg peak. Dis- 
placements that are weak but of sufficient strength to 
correlate pairs of cells within the columns play a 
dominant role in the static diffuse scattering because 
of their large numbers. However, additive terms that 
were subtracted from the second term (quasiline) 
are included as Fourier coefficients in the static 
diffuse scattering, i.e. for ~o(n < ns). These are also 

* It is not necessary to complicate this theory further by iso- 
lating Huang scattering but it could be done by treating the 
product 2rrloZ,, 3 as a small quantity. Expansion of this as a linear 
term and addition and subtraction of this term in (37) introduces 
the Huang scattering. Details of this additional expansion may be 
found in Dederichs (1971). 
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determined by the severely distorted zone but play a 
less important role in the SD scattering because of 
their smaller number in the overall Fourier series. 
They contribute to the tail portion of the relatively 
sharp SD scattering. The overall average of column 
spacings influences the imaginary components of the 
Fourier coefficients of the SD scattering. This posi- 
tions the static diffuse peak near the Bragg location. 
If this is compared with the quasiline peaks whose 
Fourier coefficients are determined from the severely 
distorted zone, a different average is found for this 
zone, which can give a shift further away from the 
Bragg position. 

The form of ~p(n) still requires relative dis- 
placements between pairs of cells m3, m; to be com- 
piled at various separations of n. At this point, ~p(n) 
can be reduced to a direct calculation of dis- 
placements from a single defect. A re-examination of 
~(n), given by (33b), indicates that it is an autocon- 
volution expressed as a summation. As written, the 
diffuse intensity requires a series transform of ~(n). 
Using this approach and knowing that the Fourier 
transform of an autoconvolution is the square of the 
Fourier transform of the convolution function, one 
obtains the desired form. The pair separation n is not 
required in the summation and we obtain 

~(h3) = Z ~o(n)exp(2zrinh3) 
n 

= c Z ~.[exp(27riloZm)- 1]exp(ZTrim3h~) . 
m 2 r n  3 

(38) 

If the terms of this series converge much more 
rapidly than N,/N3, the SD becomes 

I sn /N= F~teexp(-  2M) E~o(n)exp(2rinh3), (39) 
n 

since N, IN3= 1. Equation (38) contains a sum- 
mation over projected displacements for all cells 
about a precipitate, considered singly rather than as 
pairs. Apart from the need to take a Fourier trans- 
form to obtain ~(n), the numerical calculations are 
greatly simplified. For cells located at large distances 
from the precipitate but still at distances that allow 
m3, m~ pairs of cells to remain correlated, one finds 
10Z,, << 1. These terms lead to a Huang scattering 
that is intermediate in sharpness, between a quasiline 
and its corresponding Bragg peak. 

V. Integrated matrix intensities 

The integrated intensities from the three components 
of scattering can be readily calculated from (37) by 
recognizing that the relative intensities are 
determined by letting n = 0 in each of the Fourier 
coefficients. An examination of ~(n) according to 

(33b) and (33c) for n = 0 gives 

~p(0)= 2cY'.Z Z[1-cos(2"rr/Z, ,)]= 2M. (40) 
m l  m 2  m 3  

From (37), one readily finds the following partition- 
ing of the matrix integrated intensities in terms of 
Bragg, static and quasiline contributions, as follows: 

(i) Bragg exp ( -2M) ,  (41a) 

(ii) static diffuse 2 M e x p ( -  2M), (41b) 

(iii) quasiline 1 - exp ( -  2M) 

- 2Mexp( -2M) .  (41c) 

The partitioning of matrix intensities is illustrated 
in Fig. 1 in terms of Fourier coefficients at L = nd = 
0, for calculations carried out for a Cu-Be alloy. An 
ellipsoid of revolution having semi-axes C = 1.725/~, 
A~ = A2 = 35 A and transformation strain of 12, 12 
and -37.5% acting along each of the cubic axes is 
used as a representative precipitate. The 2M values 
are 0.9 and 1.3 for the (111) and (200) matrix peaks, 
respectively. 

An examination of the Fourier coefficients and 
their dependence on column distance, L, shows that 
the coefficients for the (111) and (200) quasilines 
converge more rapidly than those representing SD 
scattering. Also, there is a very noticeable difference 
between the convergences along the (111) and (200) 
column directions. Anisotropy is observed in the 
displacement field from the ellipsoidal model, which 
gives a larger gradient of the interplanar spacing 

1 
1 - e'2M-2Me 2M' 

2Me-2M 

e-21~ 

0 

A 
1 ,,~ 

1 - e2M-2Me "2M 

Bragg ! 

I~o 260 ~o 4~0 soo 
L(A) 

2Me-2M 

e-2M Bragg 
I 

o lOO 

(200) 
2M = 1.3 

i 
200 300 

L(A) 

I I 
400 500 

Fig. 1. Representative simulated Fourier coefficients from a 
severely distorted copper matrix containing disc-like beryllium- 
rich ellipsoids with semi-axes A~ =A2 = 35 and C =  1.7A. 
Transformation strains of 12, 12 and -37.3% are imposed at 
the precipitate zone along the cubic axes, which coincide with 
the ellipsoidal axes. (111) and (200) coefficients with 2M--0.9 
and 1.3 are shown at various crystal distances, L, for quasiline, 
static diffuse and Bragg components. 
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along a [001] than along [111]. Separate representa- 
tive shapes are shown in Fig. 2 for the sharp Bragg 
peaks, static diffuse scattering and quasilines for the 
(200) powder diffraction peak. For these simulations, 
the ellipsoid is strained by - 2 0 %  along [001] and 
0% along [100] and [010]. As one might expect from 
the convergence of the Fourier coefficients, the static 
diffuse peak is two to three times sharper than the 
corresponding quasiline. The quasiline shows the 
greatest shift away from the Bragg position while the 
static diffuse peak is located almost at the Bragg 
position. 

The integrated intensity obtained with a diffrac- 
tometer equipped with a monochromator from a 
polycrystalline material can be obtained from (41) by 
multiplying by the scaling function (see Schwartz & 
Cohen, 1987), 

KoKi(20 ), 

with 

1(,(20 ) = (IoAowh/ l~ V 2) 

x [(1 +Pcos220)/(1 + P)sin 2 0cos O]jg~ 

x e x p ( - 2 m ) r  (42) 

and Ko = constant, Io = intensity of incident beam, 
Ao = cross-sectional area of incident beam at the 
specimen, w and h are the receiver-slit width and 
height, respectively,/z is the overall linear absorption 
coefficient of the alloy, Vc is the volume of an 
average unit cell in the matrix, j is the multiplicity 
factor of the normal Bragg peak, g~ is the orientation 
correction factor for planes i if the sample has a 
texture (g = 1 if the sample is an ideal powder), P is 
the polarization factor, which is one if no mono- 
chromator is used,* 20 is the diffraction angle for 

* If P is not known from experiment, it is conventionally taken 
to be cos 2 20',  where 20' is the diffraction angle from the 
monochromator. 

Total - ~  

72 74 76 78 80 ..... 82 84 86 

20 

Fig. 2. Representative partitioning (2M = 2.39) of the simulated 
(200) matrix peak for Cr Kat radiation into quasiline, static 
diffuse and Bragg components. An ellipsoid with semi-axes A~ 
= A2 = 35, C = 7 A is used with transformation strains of 0, 0 
and - 2 0 %  acting along the plane of the ellipsoid and the 
perpendicular direction. These also coincide with the cubic axes 
for {100} precipitates. 

each of the three components for matrix scattering 
and exp ( -  2M)r is the thermal factor for the matrix. 
The structure factor is given by (15b). If these equa- 
tions are combined and integrated over ~2/N, the 
integrated intensity for the matrix is partitioned 
according to 

Pi/Ko = K,(2Os)F2eexp( - 2M) 

+ K,(2Oso)F2p2Mexp( - 2M) 

+ K,(2OQ)F2p[ 1 - exp( -  2M) 

- 2Mexp(-  2M)]. (43) 

Typically, the peak separation between the three 
components is small enough to take a common 
K,(20)F2? for all three components when dealing 
with integrated intensities. However, this should be 
considered in terms of the details associated with 
each sample. 

For experimental shape functions (measured with 
a 20 axis), the intensity scaling in terms of the 20 
dependence is somewhat modified according to (see 
Schwartz & Cohen, 1987) 

with 

Ko~Ku(20) (44a) 

K,,(20 ) = (Ioawh/ u V d) 

× [(1 + Pcos220)/(1 + P)sin20]jgi 

x exp( -  2M)r. (44b) 

The constant Kos is not of interest because only 
relative intensities are of importance. All terms have 
been previoulsy defined, including d, which is given 
by (21). 

The powder pattern describing the shape of the 
matrix intensity distributions is scaled by (44a). 
Combining this with (37) gives the Bragg, static 
diffuse and quasiline contributions: 

[Pm(20)/Koexp(- 2M)] 

= K~s(ZOs)FZeY. (N,/N3)exp(Zzrinh3) 
n 

+ K~(ZOsD)F2eZ (N,/N3)~o(n)exp(ZTrinh3) 
?1 

+ Ki,(ZOQ)F2p~. (N,/N3){exp[~o(n)]- 1 - ~0(n)} 
n 

x exp(27rinh3). (45) 

Although the scaling terms Kgs and the structure 
factors should strictly be calculated at the peak 
positions, the small separation normally allows these 
terms to be evaluated at the geometrical center of the 
overall intensity distribution from the matrix. 

VI. Precipitate scattering 

In the general case where precipitate and void scat- 
tering overlap, they are not obviously separable. This 
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combination has been treated as a difference in their 
scattering amplitudes squared. It has the form of the 
classical Laue monotonic scattering but instead of 
dealing merely with the difference in scattering from 
two kinds of atoms, it involves a difference between 
the many atoms arranged into zones as precipitates 
and a similar but fictitious zone of matrix atoms. The 
latter look like an arrangement of matrix atoms over 
those distances required to form a void. Their posi- 
tions and composition are defined in terms of the 
matrix atoms and its lattice. The local strain condi- 
tions are those existing in the matrix which develop 
as a result of precipitation. Because of the similarity 
with the matrix lattice over those distances associ- 
ated with voids, void intensity overlaps matrix scat- 
tering. Furthermore, with the dominance of 
particle-size broadening, a separation into its diffuse 
components according to (34) is not useful because 
no single component is expected to be distinguish- 
able or unique in its shape. Some, but not all, of the 
same discussion applies to the precipitate. For the 
early stages of precipitation, it is reasonable to 
assume that the displacement fields are continuous 
through each precipitate. However, each precipitate 
is subjected to an additive transformation strain that 
is not directly imposed upon a void. This additional 
transformation introduces a new lattice in both real 
and reciprocal space. Both the direct-void and preci- 
pitate intensities may be written most simply in the 
form 

Ix~N= CoO - Co)F2[exp( - 2M)/No] 

x Z(N,,/N3)exp[~o(n)]exp(2~ih~), (46) 
-x 

with x referring to either voids or a precipitate. 
These appear in (16), along with a third term that 
requires both void and precipitate amplitudes. This 
cross term is nonzero in the general case with over- 
lapping functions. It becomes more important as the 
differences between matrix and precipitate lattices 
become small and precipitate size is also small. If the 
precipitate scattering is sufficiently sharp or Bragg- 
like, scaling for the powder pattern shapes is 
obtained from (44a). 

In order to treat precipitate scattering, fictitious 
void sites were introduced in order to be able to sum 
conveniently over all sites in the matrix. Subtracting 
these terms in the amplitude calculation leads to void 
scattering. In the present problem, the process of 
forming a void and refilling with a precipitate are 
interrelated and the combined scattering may be 
related to precipitation. Consequently, this combina- 
tion will be called precipitate scattering rather than 
Laue scattering. Even when the overlap term can be 
neglected, one expects void as well as direct preci- 
pitate scattering even though void scattering is not 
readily measured. On this point, the estimated ratio 
of direct void intensity to matrix scattering at its 

peak is 

c /(1-Co)no. 
For Cv = 0.1 and no > 10, the ratio at peak heights 
would be expected to be less than 0.001. Measurable 
void scattering would be expected beyond the range 
of the matrix scattering, which is more highly local- 
ized. The location of the direct precipitate scattering 
will, of course, depend on the transformation strain 
imposed upon the zone of precipitation, so that no 
general statements can be made. 

Although the separation into three components is 
somewhat artificial, owing to the dominance of 
particle-size terms, (37) is of value in understanding 
asymmetry introduced by the imaginary component 
of ~o(n). An examination of the weighting factors 
given in (41) provides insight into trends brought 
about by increases in 2M. As 2M increases, the 
contribution from the severely distorted zone 
increases. This influences ~o(n) and, therefore, the 
shape of the precipitate scattering. For intermediate 
2M, all three components influence the shape of the 
precipitate scattering; however, no single component 
introduces a strongly distinguishable feature. The 
weighted interplay of all three may introduce an 
asymmetry and peak shift. 

As an additional complication, when the particle 
size becomes very small ( < 30 A), one must carry out 
an integration over a spherical surface in reciprocal 
space in order accurately to relate powder diffraction 
data with theory. Although such numerical calcula- 
tions are readily carried out on a computer, it rep- 
resents an added complication in the data-fitting 
procedure. 

VII. Summary 

A model has been discussed that deals with the X-ray 
scattering from randomly positioned precipitates in a 
finite and continuous crystalline matrix of fixed size. 
No conditions are placed upon the severity of the 
displacements. However, the fraction of precipitate 
centers must be small relative to the total number of 
lattice sites. The end result contains terms that 
describe the general scattering from the matrix, with 
zones of severe distortion, as well as the scattering 
from precipitates. This random-model calculation 
leads to the following conclusions: 

(i) The intensity of matrix scattering is partitioned 
into three components; Bragg, static-diffuse (SD) 
and quasiline. As the severity of the displacements 
increase, the Bragg peaks are reduced, while the SD 
component can at first increase to a maximum before 
vanishing like the Bragg peaks. A quasiline is much 
broader and increases in intensity with the volume 
fraction of the severely distorted zone. 

(ii) When they are observable, the Bragg peaks 
retain their sharpness, which is determined by the 
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overall size of the matrix lattice. This is independent 
of the size or number of precipitates, as well as of the 
severity of the field that surrounds them. 

(iii) Scattering coherency from precipitates can 
influence the intensity from the matrix when the 
structures of the precipitate and matrix are similar 
enough to introduce overlapping amplitudes of scat- 
tering. 

(iv) In the mixed-partitioned state only two matrix 
peaks may be apparent. One appears sharp and the 
second is broad. The sharp peak is a mixture of the 
Bragg and SD peaks, which tend to be located very 
near each other, while the broad peak is a quasiline. 
Consequently, matrix scattering may appear as a 
doublet. 

(v) Precipitate scattering includes direct scattering 
from precipitates and voids as well as a cross term. 
The cross term may become negligible when no 
overlap occurs between the precipitate and void 
amplitude functions. In most cases, the shape of the 
precipitate scattering is primarily influenced by the 
size and shape of the precipitates. Displacement 
fields from other precipitates can interact and pro- 
duce additional broadening. Partitioning in the case 
of precipitate scattering is not likely to be evident, 
although a peak shift and asymmetry resulting from 
strain may exist. 
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Abstract 
Observations of the experimental electrostatic 
potential obtained from X - X  spherical electron 
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density can be used to derive point charges centred 
on the atoms. This is applied to a pseudopeptide, 
N-acetyl-a,fl-dehydrophenylalanine methylamide. 
The experimentally determined charges are consist- 
ent whatever the sampling points and 'follow' the 
atomic site when the conformation of the molecule 
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